
 Local Applications Table
Support for closed loops, etc.

Aug 28, 1990

A means of expansion of the VME local station system software is by the use of
local applications, which are separately-compiled procedures that are invoked by
the system during Data Access Table processing. The Local Applications Table
(LATBL) contains the entries that result in their invocation.

Invocation context
During Update Task processing of the Read Data Access Table (RDATA), one

particular entry causes the LATBL entries to be processed. This means that local
applications are invoked during updating of the datapool, likely to be positioned
either at or near the end of RDATA.

Each local application (LA) is expected to be written as a Pascal procedure, just as
are application page programs. The calling sequence is as follows:

TYPE

TrigType = (init, term, kbint, cycle, net);

ParamList = RECORD

sVarPtr: sVarPtrType;

enableBit: Integer;

params: ARRAY[1..9] OF Integer;

 END;

PROCEDURE LocalApp(trig: TrigType; VAR LAEntry: ParamList);

The first argument is the same as that used by application page programs.
(The kbint and net options may not apply.) The init call occurs the first
time that the program is invoked since being enabled. The term call occurs
when the LA is being disabled. The cycle call is the normal one given each
15 Hz cycle or whenever directed via a special Data Access Table entry.

The second argument is a ptr to a part of the LATBL entry. It points to a
structure in the table entry reserved for a ptr to the LA’s static variables and
an array of up to 10 integers, the first of which specifies the local binary Bit
used as the enable/disable control for this invocation. The other integer array
elements may be anything else required by the particular LA.

Local Applications Table Aug 28, 1990 page 2
During the init call, the LA is expected to allocate memory for its own static
variable requirements. This can be done by calling this routine:

Function Alloc(sVarSize: Longint): sVarPtrType;

This call invokes the pSOS memory allocation routine and returns a ptr to the
allocated memory. If the storage cannot be allocated, a NIL ptr is returned.

When the sVarPtr is returned by Alloc, the LA should save it in the first
longword of its ParamList structure. This is necessary because the LA is a
Pascal procedure that must be invoked multiple times during the time that its
LATBL entry is enabled. Any information that must be saved by the LA across
calls to it must be stored in this static variable space. Note that a given LA may
be invoked multiple times with different ParamList structures. An example is the
Linac rf gradient regulation that is to be done for 3 rf stations by one local station.
This will use 3 entries in LATBL but only a single entry in CODES for the gradient
regulation program (procedure).

When the term call is made, the LA should free its static variable allocation by
calling this routine:

Procedure Free(statVarPtr);

This procedure simply frees the memory allocated by Alloc.

Local Applications Table
A new system table (#14) supports local applications. An entry in this table

has the following format:

status

enable Bit#ptr to static variables other params…

 namecount

The status word is a copy of the previous enable bit reading. Comparing this
value with the current enable bit reading allows the system logic to decide what
to use for the trig argument in the call to the LA. The enable bit, when set,
signifies that the entry in LATBL is enabled. When an LA entry makes a transition
from disabled to enabled, the init call is used. The LA is expected to allocate

Local Applications Table Aug 28, 1990 page 3
during this execution, the act of disabling a local application means it will “start
over” when it is re-enabled.

The program that is to be run is identified by 4-character name. Along with the
type code of LOOP, the CODES table of downloaded separately-compiled
programs is searched for a match, and the address of the executable copy of the
program is used as the target for the call. The first time that the program is
accessed, for the init call, a checksum check is performed to insure that the
downloaded code has not been corrupted, and the program is copied into newly-
allocated dynamic memory for execution. This means that the downloadable area
is always available to receive a new version.

Downloading a new LA
When a change is to be made in a LA program, the new code is downloaded

without concern for the currently-executing code. The LA scan finds the name of
the LA and the ptr to the executing code (in on-board memory) in the CODES
table entry corresponding to that name. The process of downloading leaves this
pointer alone while the code is copied into a newly-allocated area.

When downloading is complete, the checksum is sent to be stored in the CODES
table entry, and the ptr to the downloaded code is marked (by setting its ls bit) to
show that it is a fresh copy.

LATBL table processing
When LATBL entries are scanned by the Update Task, and a fresh

downloaded copy of the code is detected, and the type of call was to be a cycle
call, the call type is altered to a term call. This gives a chance for the LA to free
any allocated static variable storage and “clean up its act” in general. After any
term call, the saved copy of the LA’s enable bit reading is cleared. This will cause
an init call to be given on the next cycle if the LA is still enabled. The checksum
will again be checked and new memory allocated for execution in on-board ram.

After all LATBL entries have been scanned, a separate scan is made over the LOOP
entries in the CODES table. For each entry which has the fresh download bit set,
the bit is cleared, the executable area is freed and its ptr cleared.

The result of the above logic is that those entries which use the program just
downloaded will be disabled and re-enabled automatically the very next cycle.
(If it is desired to prevent an alarm message from being sent, in the case that the
enable/disable status bit is being monitored, one can merely elect to use the 2X
option with that status bit, since the bit will be disabled for only one cycle.) This
means the new version of the code will take effect right away. To prevent this,
either disable all LATBL processing by disabling the Data Access Table entry, or

Local Applications Table Aug 28, 1990 page 4
PAGEP table processing

The index page logic directs the call-up of application pages. When a page is
being called up, if the lo byte of the longword which contains the pointer to the
entry point of the application page program is nonzero, the 4-byte “pointer” is
assumed to be a program name of type PAGE. (Note that this implies that using a
ptr in the old way can still work as long as the entry point address is on a 256-
byte boundary.) A search is made for a match in the CODES table, and the
download area is sum-checked, memory is allocated in on-board ram for it, and
the program is copied into that area for execution.

When the program terminates, either because a new page is called up or a return
is made to the index page, a scan is made of the CODES table. The allocated area
of any PAGE type entry in the CODES table is freed, and its pointer is cleared. This
is done because only one PAGE program can run at a time. Note that this is in
contrast to the LOOP type programs, in which many can be running at once.

TASK or INIT processing
New tasks may be added to the system code by making a scan at reset time

which looks through the CODES table for any entries of type TASK or INIT. Such
entries can be copied into executable memory and called. What they do depends
upon how they are written. Such a program could spawn and activate a task, for
example. Or it could simply do some job at reset time. Only one call would be
made to such a program, and it would be made from the ROOT task. This adds
another dimension to system configuration possibilities.

